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Abstract

In this paper we identify a novel reason why signaling may fail to separate types, which is

specific to cases where the receiver has to incur a cost to acquire the signal sent by the sender.

If the receiver chooses not to incur the acquisition cost, then all sender’s types find it optimal to

pool on the least costly signal; also, if all sender’s types pool on the least costly signal, then the

receiver finds it optimal not to incur the acquisition cost. This kind of strategic complementarity

makes the resulting pooling equilibrium extremely robust, even when costs of signal acquisition

are very small. Also, pooling is shown to be robust to all refinements based on out-of-equilibrium

beliefs, even when the sender can engage in further signaling that can act as an “invitation” to

acquire the main signal, and when acquisition costs are smooth and depend on the receiver’s

effort to acquire the signal. However, the pooling outcome is not necessarily robust when signals

are not purely costly or the receiver can initially commit to acquire the signal. These results

provide a new source of interest in pooling equilibria.
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1 Introduction

Signaling is a pervasive phenomenon in economic interactions, emerging in many situations where

there are information asymmetries. Many signaling models have been developed and studied,

making the class of signaling games a quite prominent one in economics (see Riley, 2001, for a

comprehensive survey).

An important characteristic of signaling games is that they typically show many Bayes-Nash

equilibria with rather distinct features: equilibria in which sender’s types pool together by sending

the same signal and equilibria where sender’s types separate from each other by sending different

signals.

In applied research, signaling models are often used with the focus on the best separating

equilibrium, also called the Riley equilibrium, i.e., the equilibrium where all sender’s types separate

but they incur the minimun necessary signaling cost to do so. This is in good part due to an

important stream of literature that has shown the prominence of the Riley equilibrium when agents

are supposed to possess a sufficient degree of forward induction (see Sobel, 2009, for an instructive

survey and Subsection 6.1 where we provide more details on this point).

Quite surprisingly, however, not much attention has been given to the possibility that the

acquisition of the signal by the receiver might be a costly activity. Is the assumption of freely

acquisition of signals innocuous? In this paper we show that it is definitely not so. Indeed, even

a very small cost of signal acquisition can make a great difference in terms of the robustness (and

plausibility) of equilibria. In particular, we show that in the presence of costs to acquire the signal

the pooling of sender’s types becomes at least as prominent as their separation as an equilibrium

outcome. This happens because of the emergence of strategic complementarity: if the receiver

chooses not to incur the acquisition cost, then all sender’s types find it optimal to pool on the

minimum signal and, at the same time, if the different types of the sender pool on the same signal,

then the receiver finds it optimal not to incur the acquisition cost. So, a complementarity naturally

arises between the receiver’s incentive to costly acquire the signal and the sender’s incentive to

engage in the costly signaling activity. Our results suggest that new attention should be given

to pooling outcomes. This could have far-reaching implications, especially in the light of the

widespread reliance on separating equilibria in applied models.

The paper is organized as follows. In Section 2 we review the literature on costly acquisition

of information. In Section 3 we introduce signaling games with costly acquisition of signals by

means of an example that is a variant of the classical Spence’s signaling model. In Section 4 we

define a general class of signaling games with costly acquisition of signals. In Section 5 we show

that the existence of acquisition costs can lead to kind of strategic complementarity that sustains

a pooling equilibrium, which is also shown to be the unique pooling outcome; further, we contrast
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the equilibra that emerge in this class of games with those that emerge in the related class of

standard signaling games (i.e., with no acquisition costs). In Section 6 we explore the robustness of

the pooling outcome along four dimensions: equilibrium refinements acting on out-of-equilibrium

beliefs (Subsection 6.1), equilibrium selection by means of further signaling that can act as an

“invitation” to acquire the main signal (Subsection 6.2), smooth acquisition costs that depend on

the receiver’s acquisition effort (Subsection 6.3), signals that are not necessarily a net cost for the

sender (Subsection 6.4), and the possibility for the receiver to initially commit to acquire the signal

(6.5). We find that only in the last two cases the pooling outcome might not survive, restoring the

prominence of the separating outcome, while it is robust in the first three cases. We also point out

that, for the case in which signals are not purely costly, our findings are still relevant if we want to

predict the effects of imposing a mandatory minimum signal to the senders.

2 Related literature

The idea that the acquisition of information is a strategic choice which comes at a cost is receiving

increasing attention in economics. Several models with this feature have been investigated but just

a few of them are closely related to our model. In fact, most of these models do not consider a

sender-receiver setup, and those who consider a signaling framework do not explore the possibility

that information acquisition involves the signal itself.1

Gabaix et al. (2006) test the directed cognition model – which assumes that agents use partially

myopic option-value calculations to select their next cognitive operation – by studying information

acquisition in two different experiments. Caplin and Dean (2014) develop a revealed preference test

for the costly acquisition of information, encompassing models of rational inattention, sequential

signal processing, and search. Liu (2011) studies the dynamic behavior of firms and customers in

markets with costly acquisition of information on past transactions. Brocas et al. (2012) consider

a model where two adversaries can spend resources in acquiring public information about the un-

known state of the world in order to influence the choice of a decision maker and find that as the

cost of information acquisition for one adversary increases, he collects less evidence whereas the

other adversary collects more evidence. Shi (2012) analyzes optimal auction design in a setting

where values are private and there are several potential buyers who can each costly acquire infor-

mation about others’ valuations prior to participation in the auction. Oliveros (2013) studies the

role of abstention in an election where voters can costly acquire information and the cost increases

in the precision of the information acquired. Morath and Münster (2013) study the incentives

1See for instance the literature on strategic pricing and information acquisition of product quality from a third

party started with Bester and Ritzberger (2001) (see also Gertz, 2014 and Martin, 2015).
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for information acquisition ahead of conflicts, showing that information acquisition is excessive or

not depending on public observability. Colombo et al. (2014) consider a general framework where

agents interact under both strategic complementarities/substitutabilities and externalities, show-

ing that the social value of public information is affected crucially by the private choice to costly

acquire information. Argenziano et al. (2014) study the case of an expert that can costly acquire

information to advise a decision-maker; they show that the information acquired by the expert can

be more precise than the information that would be directly acquired by the decision maker, even

if the expert is not more efficient than the decision maker at acquiring information. Menichini and

Simmons (2014) characterize the optimal audit structure with ex-ante information acquisition.

A paper more closely related to ours is Dewatripont and Tirole (2005) which develops a theory

of costly communication where both the sender and the receiver have to incur a cost in order to

communicate.2 The model can be seen as a standard cheap talk model where the precision of the

message depends on the cost sustained by the sender and where the receiver has to incur a cost –

which may depend on the message precision – to acquire the message. Due to such costs, a form of

strategic complementarity arises – that is similar to the one emerging in our model – which gives

rise to a robust babbling equilibrium where the message sent by the sender contains no information

and the receiver does not acquire it. The main difference with our model is that Dewatripont and

Tirole (2005) do not consider costly signaling, but different modes of cheap communication.3

Tirole (2009) develops a model of limited cognition and examines its consequences for contrac-

tual design. This paper formalizes the idea that the acquisition of information is a costly activity

because of cognitive limitation. This same idea is applied to persuasion in Bilancini and Boncinelli

(2014a) where the receiver has to incur a cognitive cost to fully and precisely elaborate information.

In this model the sender tries to persuade the receiver to accept an offer by sending a costly signal

- the reference cue - which refers the offer to a category of offers whose average quality is known

by the receiver; the actual quality is a sender’s private information, but the receiver can pay a cost

to acquire it – the elaboration cost. Pooling equilibria emerge also in this setup and turn out to

be robust. However, they are not due to strategic complementarity: a pooling equilibrium – i.e.,

an equilibrium where the bad offer and the good offer are proposed with the same reference cue

– is sustained by the fact that the receiver accepts or not the offer independently of the observed

reference cue, no matter what information she decides to acquire. An important difference between

2We observe that, while costs are paid by both the sender and the receiver, communication remains one-sided.

For a recent contribution where communication is two-sided and costless, see Eső and Wallace (2014).
3The informativeness of communication in a cheap talk setting has been recently studied by Chen and Gordon

(2015), who generalize the comparative statics analysis in the seminal paper of Crawford and Sobel (1982), and by

Shimizu and Ishida (2015), who show that the extent of communication is severely limited as the receiver becomes

more informed.
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the model by Bilancini and Boncinelli (2014a) and the one developed in the present paper is that

in the former the acquisition cost is paid to acquire hard information on the state of the world,

while in the present paper the cost is paid to acquire the soft information embodied by the signal.

3 A motivating example

Consider the following simple variant of the classical model by Spence (1973). There is one employer

E that wants to hire a workerW . There are two types of workers, distinguished by their productivity

θ ∈ {1, 2}, which is a worker’s private information; E has a prior 0 < p < 1 that W is highly

productive, i.e., that θ = 2. Technology and market conditions are such that E’s net profits are

given by θ−w if a worker is hired, with w the wage paid to the hired worker and θ his productivity,

while otherwise profits are 0.

Moreover, W can acquire education by incurring a cost that is type-dependent. In particular,

suppose that W comes from a foreign country and that he has to move to E’s country in order to

be hired. Suppose also that W can only acquire education in the foreign country, and that the only

available alternatives are a good school G and a bad school B, which are not previously known to

E. For the prospective worker of type θ, the cost of attending G is 2/θ and the cost of attending

school B is 1/θ. So, attending school G is more costly than attending school B, and it is relatively

more so for the low type θ = 1. This provides W with a costly signal x ∈ {G,B} that potentially

allows W ’s types to separate.

So far, there is no substantial difference from Spence’s model. However, what if E, in order to

assess the quality of the schooling signal x sent by W , has to actively acquire the information on

what school W has attended in the country he comes from, and what attendance costs have been

paid? These information can well not come for free and, we stress, this can make the difference.

We observe that the costs of acquiring such information can be interpreted as due to the material

and/or the cognitive effort which is necessary to retrieve and elaborate the relevant data on x. On

the material side, E might have to search and collect information on G and B, and maybe also

pay to translate documents that would be otherwise unaccessible. On the cognitive side, E might

have to make an effort to elaborate the collected information in order to establish that one school

is G with costs 2θ and the other is B with costs θ and to assign the signal x to either G or B –

otherwise the schools would be undistinguishable to E. To model this situation suppose that E

has to pay a cost c > 0 to acquire the signal x sent by W . In particular, if E does not incur the

cost c, then E cannot condition his actions on x.

Consider now the following situation: W chooses B independently of her type, i.e., x(1) =

x(2) = B, and E decides not to acquire the signal x. It is easy to check that this is an equilibrium
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in the present example: both types of W strictly lose by switching to the more costly G, and

E strictly loses by acquiring the signal because it costs c and provides no new information. We

observe that such an equilibrium is very similar to the pooling equilibrium with lowest signal that

emerges in Spence’s model. However, we stress that the presence of acquisition costs makes this

pooling equilibrium much more robust than that pooling equilibrium in Spence’s model. Since E

does not acquire any signal, W cannot use out-of-equilibrium signals to communicate with E, and

the reason is that W would not even notice that such signals have been sent. In particular, even

if W ’s high type deviates from x(2) = B to x(2) = G, there is no way to let E know – or even

imagine – about such a deviation. So, arguments based on the reasonability of out-of-equilibrium

beliefs cannot refine away this pooling equilibrium.

There is another important difference. In this example the lowest signal pooling equilibrium is

the only pooling equilibrium, again in contrast with Spence’s model where there are multiple pooling

equilibria. To see why, consider the case where both types of W pool on G, i.e., x(1) = x(2) = G.

Given this behavior by W , E finds it strictly profitable not to incur the acquisition cost, as acquiring

the signal provides no new information. But if E does not acquire the signal x, then the choice of

x(1) = x(2) = G cannot be sustained in equilibrium since each of W ’s type would strictly gain by

switching from G to B, as this allows to save on the cost of signaling without adversely affecting

E’s beliefs.

4 The model

We now introduce the more general game of signaling with costly acquisition of signals (SCAS).

There is one sender S and one receiver R (sometimes referred to as “he” and “she”, respectively).

The sender S observes his own type t ∈ T , with T a finite set of cardinality n, and then chooses

a signal x ∈ X = R+.4 The receiver R can exert costly effort and acquire the signal x, or save on

effort and observe nothing. We denote with s ∈ {s1, s2} such a choice, where s1 means that x is

not acquired and s2 means that x is acquired and effort is exerted.5 In any case, then R has to

take an action y ∈ Y = R. The prior beliefs held by R on T are given by p = (p1, ..., pn) ∈ ∆T

where pt denotes the probability that S is of type t ∈ T .

4We have chosen to use continuous action spaces because this is the most common setting for signaling models.

We stress that our results might be stated, with few straightforward adjustments, using discrete action spaces too.
5This labeling owes to the classification of elaboration processes as “System 1”, or S1, which is fast, cheap and

intuitive, and “System 2”, or S2, which is slow, costly and analytical (see, e.g., Kahneman, 2003). We stress this

interpretation based on cognitive effort because we think that it applies to many relevant cases of signal acquisition.

Of course, other interpretations are possible where the cost of acquiring the signal is entirely due to non-psychological

factors.
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Utility for S is U : T ×X × Y → R, and utility for R is V : T ×X × Y × {s1, s2} → R. The

following assumptions on utility functions hold:

A1. continuity: U and V are continuous over x and y;

A2. monotonicity in action: U is strictly increasing in y;

A3. costly signaling: U is strictly decreasing in x;

A4. single-crossing property: U(t, x, y) ≤ U(t, x′, y′), with x′ > x, implies that U(t′, x, y) <

U(t′, x′, y′) for all t′ > t and y, y′ ∈ Y ;

A5. fixed positive cost of acquiring the signal:

V (t, x, y, s1)− V (t, x, y, s2) = c > 0 for all t ∈ T , x ∈ X, y ∈ Y .

In the light of A5, we can define function v : T ×X×Y → R such that v(t, x, y)− c = V (t, x, y, s2),

which represents R’s utility gross of the acquisition cost.

A strategy for S is a function µ : T → X;6 we denote with M the set of all possible µ. A

strategy for R is a pair (s, α) where s ∈ {s1, s2} and α : X × {s1, s2} → Y is a function such

that α(x, s1) = α(x′, s1) for all x, x′ ∈ X, i.e., R’s action is unconditional on x whenever s = s1 is

chosen; we denote with A the set of all such functions.7

For given µ and (s, α), R has posterior beliefs that crucially depend on her choice of s. If

R chooses s = s2 then she has posterior beliefs β(x|µ, s2) = (β1(x|µ, s2), . . . , βn(x|µ, s2)) ∈ ∆T ,

where each βt(x|µ, s2) denotes the probability that S is of type t conditional on the observation of

x. These beliefs can be obtained by Bayes’s rule, if applicable, or be chosen otherwise. If, instead,

R chooses s = s1 then she can only rely on her priors – no new information is acquired – so that

posteriors are trivially identical to priors: βt(x|µ, s1) = βt(x
′|µ, s1) = pt, for all t ∈ T and all

x, x′ ∈ X.

We introduce the following additional assumption:

A6. uniqueness of best action under s1:

ρs1(µ) = arg maxy∈Y
∑

t∈T ptv(t, µ(t), y) exists and is single valued.

6This notation is somewhat non-standard, but it allows us to be consistent with the related literature (e.g.,

Carlsson and Dasgupta, 1997).
7Here we adopt a specification of strategies for R that more is compact but perhaps less straightforward than, e.g.,

α(s, αs1 , αs2) where αs1 ∈ Y is the action taken if s = s1 and αs1 : X → Y is the action taken if s = s2. We stress

that the two formulations are equivalent in the sense that we can go from one to the other by coalescing (Thompson,

1952) the information set that R reaches when s = s1 with the one where R chooses s, although in this game there is

an infinite number of information sets. For more details see Elmes and Reny (1994) and the discussion in Alós-Ferrer

and Ritzberger (2013, example 9).
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Assumption A6 resembles an assumption that is typically made in standard signaling models: the

single-valuedness of the receiver’s best reply. We stress, however, that A6 does not ensure this

much. In fact, it is consistent with the case where R is indifferent between choosing ρs1(µ) with no

acquisition of the signal and some other action (or actions) with the acquisition of the signal. We

observe that, because of the separability of acquisition costs implied by assumption A6, the best

action does not depend directly on the choice between s1 and s2, but it does indirectly through

the updating of beliefs that becomes possibile when s2 is chosen. This implies that the best action

against µ is given by ρs1(µ) whenever posteriors are identical to priors, independently of the choice

of s ∈ {s1, s2}.

Definition 1. (weak Perfect Bayes-Nash equilibrium of the SCAS game)

A wPBE equilibrium of a SCAS game is a profile of strategies (µ, (s, α)) such that:

E1. µ(t) ∈ argmax
x∈X

U(t, x, α(x, s)), for all t ∈ T ;

E2. for all x ∈ X, there exists beliefs β(x|µ, s) ∈ ∆T such that (s, α) satisfies:

E2.1. α(x, s1) = ρs1(µ) for all x ∈ X;

E2.2. α(x, s2) ∈ arg max
y∈Y

∑
t∈T

βt(x|µ, s2)v(t, x, y)− c for all x ∈ X;

E2.3. s = s1 implies that:∑
t∈T

ptv(t, µ(t), ρs1(µ))≥
∑
t∈T

pt

(∑
k∈T

βk(µ(t)|µ, s2)v(t, µ(t), α(µ(t), s2))−c

)
;

E2.4. s = s2 implies that:∑
t∈T

ptv(t, µ(t), ρs1(µ))≤
∑
t∈T

pt

(∑
k∈T

βk(µ(t)|µ, s2)v(t, µ(t), α(µ(t), s2))−c

)
;

E3. the beliefs β(x|µ, s) ∈ ∆T are calculated by means of Bayes’s rule whenever possible.

The meaning of E1 is straightforward: S must be best-replying to R. Similarly, the meaning of

E2 is that R must be best-replying to S given her beliefs; in particular, R must be optimally

choosing action y ∈ Y under both s1 (E2.1) and s2 (E2.2) (and, in the latter case, for any observed

signal x) as well as choosing optimally between s1 and s2 (E2.3 and E2.4). Condition E3 is also

straightforward. We observe that, in the present setup, posterior beliefs along the equilibrium path

are the following:

• if s = s2 then, for all t ∈ T and for all x such that µ(t′) = x for some t′ ∈ T :

βt(x|µ, s) =


pt∑

k:µ(k)=x pk
if µ(t) = x

0 if µ(t) 6= x;

• if s = s1 then βt(x|µ, s) = pt for all t ∈ T and for all x ∈ X.
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Lastly, in order to better contrast our results with the results on standard signaling games we

find it useful to define the standard signaling game that can be obtained from a SCAS game by

forcing R to play s = s2 and setting c = 0. We call this a game of signaling with free acquisition of

signals (SFAS). Note that a SFAS game with utilities U and v is actually the standard signaling

game – i.e., with no costs to acquire the signal – that can be obtained from a SCAS game with

utilities U and v and any acquisition cost c > 0. In the light of this, we denote with Γ(T, p, U, v, c)

a given SCAS game – where T is the sender’s type space and p is the tuple of receiver’s priors –

and with Γ(T, p, U, v, 0), its associated SFAS game.

5 Equilibria

The set of Bayes-Nash equilibria of a SCAS game is in general different from the set of Bayes-Nash

equilibria of a typical signaling game. This difference is mostly due to the inexistence of pooling

equilibria where all sender’s types pool on non-minimum signals. To make this claim precise we

provide a number of results characterizing the set of equilibria of a generic SCAS game, and we

compare it to the set of equilibria of the associated SFAS game.

5.1 Strategic complementarity leads to pool on the null signal

Our first result states that in a SCAS game a pooling equilibrium – i.e., an equilibrium where

all sender’s types send the same signal – must be such that sender’s types pool on the signal

x = 0 and the receiver does not acquire the signal, implying that there is a unique pooling outcome

in equilibrium – to which we sometimes refer as a no-signal pooling equilibrium. The following

proposition formalizes:

Proposition 1. A SCAS game Γ(T, p, U, v, c) has a pooling equilibrium. If (µP , (sP , αP )) is a

pooling equilibrium, then it must be such that µP (t) = 0 for all t ∈ T , sP = s1, and αP (x, s1) =

αP (0, s2) = ρs1(µP ) for all x ∈ X.

Proof. We first show that the profile (µP , (sP , αP )) is an equilibrium. Preliminarily, note that by A6

(uniqueness of best action under s1) R’s expected utility
∑

t∈T ptv(t, µP (t), y) admits a maximum

over Y and, hence, the profile (µP , (sP , αP )) exists. For notational convenience we denote this

maximum with y∗ = ρs1(µP ).

Consider R deviating from (sP , αP ). Since αP (x, s1) = y∗ for all x ∈ X, no strictly profitable

deviation from αP exists as long as R maintains s1. Consider a deviation to (s′, α′) with s′ = s2 and

some α′ ∈ A. We observe that, since µP (t) = 0 for all t ∈ T , R obtains no additional information

by playing s2 instead of s1, and therefore her posterior beliefs must be equal to her priors p. This
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implies that y∗ is an optimal action also when s′ = s2 and signal µP (t) = 0, for all t ∈ T , is observed.

Since by A5 (fixed positive acquisition cost) the only effect on utility of playing s2 instead of s1 is,

for a given choice of α ∈ A, to incur the constant cost c > 0, it follows that R’s expected utility is

lower under deviation (s2, α′), for all α′ ∈ A, than under (sP , αP ).

Consider S deviating from µP . In particular, consider S deviating to µ′ such that µ′(t′) > 0

for some t′ ∈ T . Recall that αP (x, s1) = y∗ for all x ∈ X, i.e., the action chosen by R is y∗

independently of the actual value of µ′(t), t ∈ T . This, together with assumption A3 (costly

signaling) implies that S’s expected utility cannot be greater under any µ′ ∈M than under µP .

We now show that no pooling equilibrium other than (µP , (sP , αP )) exists. Consider the profile

(µP
′
, (sP

′
, αP

′
)) where µP

′
(t) = xP

′
> 0 for all t ∈ T . Note that, exactly because µP

′
(t) = xP

′

for all t ∈ T , along the equilibrium path R never learns anything and so R takes the same action

yP
′

= αP
′
(µP

′
(t), sP

′
) for all t ∈ T (note that yP

′
may or may not be equal to y∗). If sP

′
= s2,

then – by assumption A5 – R’s gets an expected utility of
∑

t∈T ptv(t, xP
′
, yP

′
)− c which is strictly

lower than
∑

t∈T ptv(t, xP
′
, yP

′
), i.e., the expected utility that R obtains by playing s1 together

with any αP
′′ ∈ A such that αP

′′
(x, s1) = yP

′
for all x ∈ X. So, in order for (sP

′
, αP

′
) to be a

best reply for R to µP
′
, it must be that sP

′
= s1 and, hence, αP

′
(x, s1) must be constant over X

and, in particular, such that αP
′
(x, s1) = ρs1(µP

′
) for all x ∈ X. But if this is the case, then we

claim that S has a profitable deviation. In particular, consider S deviating to µP . Since R always

responds with ρs1(µP
′
) and by A3 (costly signaling), it follows that S’s expected utility is strictly

greater under µP than under µP
′
.

5.2 Sufficiently low acquisition costs allow separation

Proposition 1 establishes that the presence of a positive cost to acquire the signal – no matter how

small – induces a strong reduction in the number and variety of pooling equilibria, actually leading

to a unique outcome where all sender’s types pool on the null signal. Our second result shows that

such a strong reduction does not take place for separating and semi-separating equilibria. More

precisely, if a SFAS game has a separating or semi-separating equilibrium and the information on

sender’s types is of some value to the receiver, then also all associated SCAS games with acquisition

costs sufficiently low possess the same equilibrium. We also observe that, trivially, all separating

or semi-separating equilibria of a SCAS game must be, a fortiori, equilibria of the associated SFAS

game.8

In a SFAS game Γ(T, p, U, v, 0), given µ ∈M where µ(t) 6= µ(t′) for some t, t′ ∈ T , we say that

8Driving the acquisition cost to 0 affects all sender’s strategies encompassing the acquisition of the signal in the

same way, leaving unaltered their relative desirability for S and making them relatively more desirable with respect

to strategies not encompassing the acquisition of the signal.
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the information conveyed by µ on sender’s types is valuable to R if there exits v̄ > 0 such that we

have:

max
α∈A

∑
t∈T

βt(µ(t)|µ, s2)v(t, µ(t), α(µ(t)), s2)−max
y∈Y

∑
t∈T

ptv(t, µ(t), y) ≥ v̄; (1)

i.e., R gains at least v̄ by acquiring information on types conveyed by µ. We observe that if the

information conveyed by µ is valuable to R in the SFAS game Γ(T, p, U, v, 0), then it is valuable

also in the SCAS game Γ(T, p, U, v, c), for all c > 0.

The next proposition formalizes the result mentioned above:

Proposition 2. Let (µS , (sS , αS)) be an equilibrium profile of the SFAS game Γ(T, p, U, v, 0) where

µS(t) 6= µS(t′) for some t, t′ ∈ T . If the information converyed by µS on sender’s types is valuable

to R, then there exists c̄
(
(µS , (sS , αS))

)
> 0 such that (µS , (sS , αS)) is an equilibrium of all SCAS

games Γ(T, p, U, v, c) with c ≤ c̄
(
(µS , (sS , αS))

)
.

Proof. Let (µS , (sS , αS)) be an equilibrium of Γ(T, p, U, v, 0) with supporting beliefs βS(x|µ, s) ∈
∆T . Since Γ(T, p, U, v, 0) is a SFAS game, it must be that sS = s2. Moreover, since (µS , (sS , αS))

is an equilibrium of Γ(T, p, U, v, 0), µS must be a best-reply to (sS , αS) for S.

Consider now the SCAS game Γ(T, p, U, v, c). Note that (µS , (sS , αS)) is a profile which is

feasible also in Γ(T, p, U, v, c), for any c > 0. Note also that, by construction, S has the same set

of strategies and faces the same payoffs in game Γ(T, p, U, v, 0) and game Γ(T, p, U, v, c), for any

c > 0. Hence, if µS is a best reply to (sS , αS) for S in Γ(T, p, U, v, 0) then it is also a best reply to

(sS , αS) for S in Γ(T, p, U, v, c), for any c > 0.

Instead, R has a set of strategies and a payoff structure in Γ(T, p, U, v, c) that are different from

those of game Γ(T, p, U, v, 0). In particular, R’s strategy set in Γ(T, p, U, v, 0) is {s2}×A which is a

restriction of {s1, s2} ×A, R’s strategy set in Γ(T, p, U, v, c); R’s payoff structure in Γ(T, p, U, v, c)

is that faced in Γ(T, p, U, v, 0) with the addition, in the light of A5 (fixed positive acquisition cost),

of −c in case R chooses s = s2. So, R’s expected utility in game Γ(T, p, U, v, c) under profile

(µS , (sS , αS)) and beliefs βS(x|µ, s) =
(
βS1 (x|µ, s), . . . , βSn (x|µ, s)

)
∈ ∆T is given by:∑

t∈T
pt

(∑
k∈T

βSk (µS(t)|µS , s2)v(t, µS(t), αS(µ(t), s2))− c

)
. (2)

Consider a deviation by R from (sS , αS) to (s1, α′), with α′(x, s1) = ρs1(µS) for all x ∈ X. Note

that, by definition of ρs1, this is the best deviation entailing s = s1 that is available to R. Note

also that, because R observes no signal under s1, R’s posterior beliefs are equal to priors p, so that

R’s expected utility for deviating to (s1, α′) is given by:∑
t∈T

ptv(t, µS(t), ρs1(µS)). (3)
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Let us set:

c̄
(
(µS , (sS , αS))

)
=
∑
t∈T

pt

(∑
k∈T

βSk (µS(t)|µS , s2)v(t, µS(t), αS(µ(t), s2))

)
−
∑
t∈T

ptv(t, µS(t), ρs1(µS)).

(4)

If the information conveyed by µS on sender’s types is valuable to R, then there exists v̄ such that

c̄
(
(µS , (sS , αS))

)
≥ v̄ > 0. By construction, c ≤ c̄ implies that expected utility (2) is not lower

than expected utility (3), i.e., deviation (s1, α′) is not profitable with respect to (sS , αS).

Consider a deviation by R from (sS , αS) to (s2, α′′). Since (µS , (sS , αS)) is an equilibrium of

Γ(T, p, U, v, 0), it follows that αS is chosen optimally by R given sS = s2 and µS . Hence, (s2, α′′)

cannot be a profitable deviation in the game Γ(T, p, U, v, c), for all c > 0.

These observations on the possible deviations by R imply that for any c ≤ c̄
(
(µS , (sS , αS))

)
the

strategy (sS , αS) is a best reply to µS for S in game Γ(T, p, U, v, c). This, in turn, implies that, for

any c ≤ c̄
(
(µS , (sS , αS))

)
, (µS , (sS , αS)) is an equilibrium of the SCAS game Γ(T, p, U, v, c).

The main insight of Proposition 2 is that, whenever information on sender’s types is valuable

to R, any separating or semi-separating equilibrium of a SFAS game is also an equilibrium of the

SCAS games with same utility functions U and v and acquisition costs sufficiently small. From

this it is straightforward to conclude that, given a SFAS game, all separating and semi-separating

equilibria in which the sender’s profile conveys information on senders types that is valuable to R

are also equilibria of any associated SCAS game if acquisition costs are low enough.

5.3 Surplus maximization

So far, we have shown that in a SCAS game the presence of costs to acquire the signal leads to the

existence of a unique pooling equilibrium outcome – where all sender’s types pool on the null signal

– while separating and semi-separating equilibria may exist in the same number and quality of

those of the associated SFAS game, but only if acquisition costs are not too large and information

on types is valuable to the receiver. Furthermore, as it is shown in Section 6, a no-signal pooling

equilibrium turns out to be robust to many standard refinements of equilibria. This suggests that

in a SCAS game a no-signal pooling equilibrium is typically more focal than in the associated SFAS

game, and this is more likely to be the case the larger the acquisition costs.

Is this good or bad news? From a welfare perspective, a no-signal pooling equilibrium can lead

to either a better or worse outcome with respect to an alternative separating or semi-separating

equilibrium. Of course, this is true for standard signaling games as well; but in the presence of
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costs to acquire the signal a no-signal pooling equilibrium is more likely to be the second best, and

the likelihood of this increases in the cost size. The next proposition makes this point clear:

Proposition 3. Given a SFAS game Γ(T, p, U, v, 0), there exists c̄P > 0 such that in all SCAS

games Γ(T, p, U, v, c) with c ≥ c̄P the pooling equilibrium (µP , (sP , αP )) entails a total surplus which

is not lower than in any other equilibrium.

Proof. Let ES(Γ(T, p, U, v, 0)) ⊆ M × {s1, s2} × A be the set of separating and semi-separating

equilibria of the SFAS game Γ(T, p, U, v, 0), i.e., (µ, (s, α)) ∈ ES if and only if (µS , (sS , αS)) satisfies

E1-E3 and µS ∈M = {µ ∈ M|∃t, t′ ∈ T, µ(t) 6= µ(t′)}. Hence, ES also contains all separating and

semi-separating equilibria of any SCAS game Γ(T, p, U, v, 0), c > 0.

For any (µ, (s, α)) ∈ ES(Γ(T, p, U, v, 0)), the total surplus of the SFAS game Γ(T, p, U, v, 0) is

given by:

TS(µ, (s, α)) =
∑
t∈T

ptU(t, µ(t), α(µ(t), s)) +
∑
t∈T

βt(µ(t)|µ, s)v(t, µ(t), α(µ(t), s));

while the total surplus associated with the pooling equilibrium (µP , (sP , αP )) of both the SFAS

game Γ(T, p, U, v, 0) and the SCAS game Γ(T, p, U, v, c) is given by:

TS(µP , (sP , αP )) =
∑
t∈T

ptU(t, 0, ρs1(µP )) +
∑
t∈T

ptv(t, 0, ρs1(µP )).

Let c̄P be defined as follows:

c̄P =


(

sup
(µ,(s,µ))∈E(Γ(T,p,U,v,0))

TS(µ, (s, α))

)
− TS(µP , (sP , αP )) if greater than 0

0 otherwise.

Consider now the SCAS games Γ(T, p, U, v, c′) such that c′ ≥ c̄P . By Proposition 1, (µP , (sP , αP ))

leads to the unique pooling equilibrium outcome, and therefore TS(µP , (sP , αP )) is trivially the

maximum total surplus among pooling equilibria.

If no separating or semi-separating equilibrium (µS , (sS , αS)) ∈ ES(Γ(T, p, U, v, 0)) is an equilib-

rium of Γ(T, p, U, v, c′), then (µP , (sP , αP )) is trivially a surplus maximizer in ES(Γ(T, p, U, v, c′)). If

there exists a separating or semi-separating equilibrium (µS , (sS , αS)) ∈ ES(Γ(T, p, U, v, 0)) that also

belongs to ES(Γ(T, p, U, v, c′)), then (µS , (sS , αS)) entails a total surplus equal to TS(µS , (sS , αS))−
c′, because of assumption A5 (fixed positive acquisition cost). Hence, we can conclude that, if

c′ ≥ c̄P , then TS(µP , (sP , αP )) ≥ TS(µ, (s, α))− c′ for all (µ, (s, α)) ∈ ES(Γ(T, p, U, v, 0)).

A straightforward implication of Proposition 3 is that whenever a no-signal pooling equilibrium

is desirable in a standard signaling setup, then it is a fortiori desirable in the presence of acquisition
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costs, no matter how big or small they are. Of course, the converse does not hold as a separating

equilibrium could well be the desirable outcome in a SFAS game, but it may not be viable in the

associated SCAS game with sufficiently large acquisition costs. The following corollary formalizes:

Corollary 1. If (µP , (sP , αP )) is a pooling equilibrium of the SFAS game Γ(T, p, U, v, 0) and

entails a total surplus which is not lower than in any other equilibrium, then (µP , (sP , αP )) also

entails this for all SCAS games Γ(T, p, U, v, c). Moreover, the converse does not hold.

Proof. The first claim follows directly from the last observation of the proof of Proposition 3.

Indeed, if TS(µP , (sP , αP )) is the maximum equilibrium total surplus in Γ(T, p, U, v, 0), then c̄P = 0,

and so TS(µP , (sP , αP )) is also the maximum equilibrium total surplus in Γ(T, p, U, v, c), for any c >

0. That the converse does not hold follows from the observation that TS(µP , (sP , αP )) is not always

the maximum total surplus in a SFAS game Γ(T, p, U, v, 0), while it must be so for the associated

SCAS game Γ(T, p, U, v, c′) for c′ sufficiently high, e.g., for c′ > max(µ,(s,µ))∈E(Γ(T,p,U,v,0)) c̄(µ, (s, µ)).

6 On the robustness of the pooling outcome

6.1 Refinements acting on out-of-equilibrium beliefs

Many refinements of Bayes-Nash equilibria have been proposed, especially for signaling games.

Most of them follow the idea that out-of-equilibrium beliefs should not be totally free, but need

to satisfy some criterion of reasonableness. All such refinements imply sequentiality (Kreps and

Wilson, 1982).

Cho and Kreps (1987) introduce the Intuitive Criterion which requires that out-of-equilibrium

beliefs place zero weight on types that can never gain from deviating from the considered equilib-

rium.

Banks and Sobel (1987) introduce Divinity which requires that out-of-equilibrium beliefs place

relatively more weight on types that gain more from deviating from the considered equilibrium.

They also introduce Universal Divinity which requires that beliefs survives Divinity for all possible

priors. The surviving beliefs do not depend on the priors – while those surviving Divinity in general

do.

Motivated by Banks and Sobel (1987), Cho and Kreps (1987) have also introduced D1, which

requires that out-of-equilibrium beliefs are supported on types that have the most to gain from

deviating from the considered equilibrium, and D2, which requires to place zero weight on types

that always have some other type gaining strictly from deviating from the considered equilibrium.
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In general Divinity turns out to be a weakening of D1, while Universal Divinity to be a strengthening

of D2.

Cho and Sobel (1990) demonstrate that, for monotonic signaling games, the set of D1 and

Universal Divinity are equivalent to Strategic Stability (Kohlberg and Mertens, 1986); moreover, if

the single-crossing property is satisfied, then D1 yields a unique equilibrium.

The perfect sequential equilibrium by Grossman and Perry (1986) is more tricky. It selects

equilibria that survive backward induction in a game where nodes are not only identified by paths

of play but also by beliefs at such nodes – they call a strategy of this game a metastrategy. The

concept of perfect sequential equilibrium selects a set of equilibria – possibly empty – that is a

subset of that obtained with the intuitive criterion.

The undefeated equilibrium by Mailath et al. (1993) rests on totally different grounds and

restrict beliefs according to payoff comparisons at distinct sequential equilibria. More precisely,

a first sequential equilibrium is defeated by a second sequential equilibrium if there exists a non-

negligible set of types that prefer to deviate from what they do in the first equilibrium to what

they do in the second equilibrium and, at the same time, the beliefs of the non-deviating types in

the first equilibrium are not consistent with such a deviation for this set of types. A sequential

equilibrium is undefeated if no other equilibrium defeats it.

These refinements relate to each other in a non trivial way,9 but all rely on the possibility

that a deviation by the sender triggers a path of play along which the receiver gets some piece of

information that is unexpected along the equilibrium path. However, in the pooling equilibrium

of a SCAS game the receiver does not acquire the signal, so that this possibility does not exist.

Intuitively, this is why refinements based on out-of-equilibrium beliefs do not have a bite in such

case.

To formalize this point let us introduce the following definitions. For given strategy profile

(µ, (s, α)) and priors p, R has beliefs β(x|µ, s) ∈ ∆T associated with each of her information sets

where an action in Y has to be chosen. Denote with Xe(µ, (s, α)) ⊆ X the set of signals that R

can observe on information sets along the equilibrium path, i.e., at information sets that contain

decision nodes along the equilibrium path. Denote with Xo(µ, (s, α)) = X \ Xe(µ, (s, α)) the set

of signals that R can observe only at information sets off the equilibrium path, i.e., at information

sets that do not contain decision nodes lying on the equilibrium path.

Moreover, denote with Xo1(µ, (s, α)) ⊆ Xo(µ, (s, α)) the set of signals off the equilibrium path

that R cannot observe as a consequence of S deviating from µ because a deviation by R is required.

9In particular, an equilibrium satisfying D1 must also satisfy D2 which in turn requires to satisfy the Intuitive

Criterion; an equilibrium satisfying Universal Divinity must also satisfy Divinity which in turn requires to satisfy the

Intuitive Criterion; an Undefeated equilibrium need only be Sequential, while a Perfect Sequential Equilibrium must

satisfy the Intuitive Criterion.
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Also, denote with Xo2(µ, (s, α)) = Xo(µ, (s, α))\Xo1(µ, (s, α)) the set of signals off the equilibrium

path that R can potentially observe as a consequence of S deviating from µ. In a SCAS game,

we call receiver-triggered out-of-equilibrium beliefs the beliefs held by R which are activated by

signals in Xo1(µ, (s, α)),10 and we call sender-triggered out-of-equilibrium beliefs the beliefs held by

R which are activated by signals in Xo2(µ, (s, α)).

A refinement that rules away equilibria by restricting admissible beliefs to a subset of those

possibly activated by signals in Xo(µ, (s, α)) can be regarded as a refinement acting on out-of-

equilibrium beliefs. All equilibrium refinements discussed above are evidently refinements acting on

out-of-equilibrium beliefs. Note that, although such refinements require R to observe an unexpected

signal, they can potentially act on beliefs activated by all x ∈ Xo(µ, (s, α)), i.e., they act not only

on sender-triggered out-of-equilibrium beliefs, but also on receiver-triggered ones.

The following proposition establishes that the pooling outcome identified by Proposition 1 is

robust to any refinement acting on out-of-equilibrium beliefs:

Proposition 4. In the SCAS game, the profile (µP , (sP , αP )) where µP (t) = 0 for all t ∈ T , sP =

s1, and αP (x, s1) = αP (x, s2) = ρs1(µP ) is an equilibrium that survives any possible equilibrium

refinement acting on out-of-equilibrium beliefs.

Proof. The considered equilibrium profile (µP , (sP , αP )) prescribes that R plays sP = s1, so it

follows that Xe(µP , (sP , αP )) = Xo2(µP , (sP , αP )) = ∅ and Xo1(µP , (sP , αP )) = X, because R can

observe a signal x ∈ X only if she deviates from her equilibrium strategy. In particular, no sender-

triggered out-of-equilibrium belief exists because, since sP = s1, any x ∈ X that is chosen by S

leads to the same R’s information set, which is on the equilibrium path. Hence, at this information

set, R must have constant beliefs which are identical to the priors p and which cannot be refined

away by refinements acting on out-of-equilibrium beliefs.

So, refinements acting on out-of-equilibrium beliefs can rule out only beliefs associated with

information sets that become active when a signal in x ∈ Xo1(µP , (sP , αP )) = X is observed.

However, none of these receiver-triggered out-of-equilibrium beliefs is necessary to sustain the

considered equilibrium. To see why, note that R always uses the priors p and S’s strategy µP to

evaluate whether to deviate or not from (sP , αP ); so, there is no deviation by S that can induce

R to deviate from (αP , sP ), as (αP , sP ) is a best response to µP given p, no matter what are the

receiver-triggered out-of-equilibrium beliefs held by R; since also µP is a best response to (αP , sP ),

it follows that S has no strictly profitable deviation from µP , and this is again independent of

the receiver-triggered out-of-equilibrium beliefs held by R. Hence, no refinement acting on out-of-

equilibrium beliefs can refine away the considered equilibrium (µP , (sP , αP )).

10We note that, although all receiver-triggered beliefs require a deviation by R to be activated, some of them may

additionally require a previous deviation by S to be activated.
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Let us remark that refinements acting on out-of-equilibrium beliefs do have a bite in a SCAS

game. Actually, they do refine away a lot of separating equilibria, in a manner similar to what

they do in a signaling game without costly acquisition of signals. Indeed, in any separating

equilibrium with profile (µS , (sS , αS)), the receiver R must be playing sS = s2, so that signals

x ∈ Xo2(µS , (sS , αS)) = X \ Xe(µS , (sS , αS)) 6= ∅ lead to sender-triggered out-of-equilibrium be-

liefs which crucially sustain separation by punishing S’s deviations from µS – as it happens in

standard signaling games.

6.2 Inviting to acquire the signal through further signaling

It seems natural to ask whether the prominence of separation is restored if S has the possibility to

communicate to R that he is actually sending an informative signal – i.e., a signal that separates

(at least partly) types – and that therefore the signal is worth acquisition.

One can think of many situations where indeed the sender can send, together with the main

signal x, an accompanying costly signal, say z, that acts as an invitation for the receiver to engage

in the costly acquisition of x. We show that, in fact, not much can be restored by the use of z.

To have an intuition of why it is so, note that in order for the accompanying signal z to help

separation, types must separate on z. Indeed, if separation is attained on x and the receiver

acquires x, then all types would strictly prefer to save on costs and pool on a null z. So, suppose

that separation is effectively attained on z. Then, the receiver strictly prefers not to incur the cost

of acquiring x – since its acquisition would add no useful information – with the result that the only

communication that takes place is that through z. However, in order for this kind of separation to

be more robust than a pooling equilibrium, it is necessary that the sender’s utility function satisfies

an equivalent of the single-crossing property on types and z – e.g., by satisfying the single-crossing

property on x and z so that, for separating profiles, the single-crossing on types and x induces the

single-crossing on types and z – but this is not guaranteed in general. At any rate, even if such

a necessary condition holds, to restore the prominence of separation the receiver must be able to

acquire z for free. In fact, if the receiver has to incur a positive cost to acquire z – no matter how

small – then the strategic complementarity (between signaling and acquiring the signal) is still in

place and the very same arguments discussed in Subsection 6.1 apply also in this setup.

To provide a more formal discussion of these ideas, we construct a variant of the SCAS game

that we call SCAS game with invitation signal (SCAS-IS), and for which we show an equivalent of

Proposition 1 and Proposition 4. Since both the details of the SCAS-IS game and the proof are

rather long and add little to intuition, we provide them in Appendix A.
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6.3 Smooth acquisition costs

One can think of the process of signal acquisition as a smooth one: the greater the cost incurred

to acquire the signal, the greater the acquisition of the signal content. In this respect, a natural

question to ask is whether separation of sender’s types becomes more likely under such a smooth

process. It turns out that the pooling outcome retains its focality, as the robustness of a no-signal

pooling equilibrium does not depend at all on the fact that R’s acquisition choice is binary, i.e.,

either pay the acquisition cost and acquire x or pay nothing and acquire nothing.

A simple way to model a smooth process of signal acquisition is to consider a stochastic acqui-

sition where the probability of acquiring x is an increasing function of the cost paid.11 Suppose

R has the possibility to choose a level of acquisition effort e ∈ [0, 1], which replaces the choice of

s ∈ {s1, s2}; also, with probability 1 − e no signal is acquired, while with probability e the signal

is acquired. Note that a no-signal pooling equilibrium is still sustained by a form of strategic com-

plementarity: if S chooses x = 0 for all t ∈ T then R’s optimal choice is e = 0 (so never acquiring

the signal), and if R chooses e = 0 then S’s optimal choice is x = 0 for all t ∈ T .

Similarly to what done for the SCAS-IS game, in order to provide a formal argument in sup-

port of intuition we provide a variant of the SCAS game that accommodates the idea of smooth

acquisition costs. We call this variant the SCAS game with acquisition effort (SCAS-AE); for such

a class of games we show an equivalent of Proposition 1 and Proposition 4. Since also in this case

both the details of the game and the proof are rather long and add little to the intuition described

in the current subsection, we put them in Appendix B.

6.4 Signal not purely costly to the Sender

The SCAS game studied in this paper accommodates cases where the signal x is purely dissipative

– it is always a net cost for S and of no intrinsic utility (or some disutility) for R – as well as

cases where the signal x is of some intrinsic value to the receiver. However, the model does not

accommodate the case where x is not a pure net cost for the sender. Indeed, this case is ruled out

by assumption A3.

In particular, assumption A3 together with the fact that X has a lower bound at 0 implies that

all sender’s types strictly prefer, other things being equal, to set x = 0. Formally, we have that A3

and X = R+ imply that:

x∗(t, y) ≡ arg max
x∈X

U(t, x, y) = 0 , for all t ∈ T, y ∈ Y. (5)

11A different way to model smooth process of signal acquisition is to have the signal x always acquired but with

some blurring noise whose incidence negatively depends on e.
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It turns out that the kind of strategic complementarity that supports the pooling outcome in a

SCAS game may not exists if (5) does not hold. However, we stress that what is crucial to our

results in (5) is not that 0 is the common best signal for all sender’s types in the absence of a

signaling value – an assumption which, in fact, can easily be substituted with a common optimal

x∗ > 0 for all t ∈ T ; what really matters for the existence of the needed strategic complementarity

is that a common best signal exists for all types. To see why, consider the extreme case where

x∗(t, y) is one-to-one in t for any given y. This means that, even in the case that R chooses s = s1,

all sender’s types would find it optimal to choose a different x. If the information about the sender’s

type is sufficiently valuable to R, it becomes impossible for a profile with no signal acquisition to be

an equilibrium. Indeed, since types separate independently of R’s behavior, to rule out equilibria

where the signal is not acquired is sufficient to have that the expected value for R of discovering

S’s type is greater than the cost of acquiring the signal.

Let us conclude with a few remarks that, in our opinion, indicate that acquisition costs – and

in general the analysis conducted in this paper – might be relevant even when A3 does not hold.

One remark regards the refinement potential of arbitrarily small acquisition costs in a standard

signaling game. Note that if x∗(t, y) is one-to-one in t for any given y, then the incentive for S’s

types to separate does not come from the fact that R acquires the signal, but from the fact that

each type has its own preferred x. This rules out all pooling equilibria in a SCAS game, but it does

not so in the associated SFAS game (i.e., in a standard signaling game). In fact, in a SFAS game

R always chooses s = s2, and in particular it does so also when all S’s types pool on the same x̄;

this allows for out-of-equilibrium beliefs on the part of R that harshly punish types who deviate

from x̄, sustaining the pooling equilibrium. In a SCAS game, instead, R would switch from s = s2

to s = s1, leaving each type t ∈ T free to switch to his preferred x∗(t, y). Perhaps interestingly,

this argument shows that an arbitrarily small acquisition cost rules out all pooling equilibria in

signaling games where types strictly prefer different signal levels.

Another remark regards the potential backfiring of mandatory disclosure policies. Consider a

SCAS game where x represents costly disclosure of some characteristic on the part of the sender,

and suppose that a public authority wants to keep x above a certain threshold. If x∗(t, y) is one-

to-one in t for the relevant range of y, then some disclosure will certainly happen as no pooling can

be sustained in equilibrium. However, if the public authority imposes a minimum x̄, then it can

happen that separation collapses and a pooling equilibrium on x̄ with no signal acquisition emerges.

In particular this will happen whenever x̄ ≥ maxt∈T x
∗(t, ȳ), where ȳ is the best action for R under

s1 when all types pool on x̄ (for smaller values of x̄ a partial pooling can emerge, instead). This

may lead to a loss in terms of information transmission that more than offsets the targeted benefits

of a high x.
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6.5 Publicly committing to acquire the signal

In the SCAS game studied in Section 4 and 5, as well as in the variants discussed in Subsection 6.2,

6.3, and 6.4, there is no possibility for the Sender, prior to choosing the signal, to observe the choice

of the Receiver between acquiring and not acquiring the signal. This neglected case is strategically

equivalent to a situation where the receiver R must publicly commit to choose s1 or s2, so that S

learns if R will acquire the signal before choosing what signal to send. It is not too complicated to

see that if R must publicly commit to a given s ∈ {s1, s2}, and information is sufficiently valuable

to her, then the prominence of separation is restored.

Consider a variant of the SCAS game Γ(T, p, U, v, c) where R must12 initially commit herself

to choose s̄ ∈ {s1, s2} and suppose also that such commitment is observed by S before he choses

whatsignal to send. This configures an additional initial stage of the game where R announces

s̄, followed by a second stage of the game where S chooses the signal x, and then a third stage

where R plays s̄ and chooses an action y. In this setup, S can condition the choice of the signal

on s̄, so that his strategy is now represented by function µ̄ : T × {s1, s2} → X. Note that this

setup configures two distinct subgames: one signaling (sub)game in which R has committed to s1

and S knows that his signal will never be acquired by R (basically, signalling is impossibile), and

another signaling (sub)game where R has committed to s2 and S knows that his signal will always

be acquired (basically, the associated SFAS game). Such dynamic structure of the game naturally

calls for an equilibrium concept that entails backward reasoning. A simple way to do so is to look

for subgame perfection after having refined the equilibria of each signaling subgame using standard

refinements acting on out-of-equilibrium beliefs.

In the signaling subgame where R has committed to s1, there is just one Bayes-Nash equilibrium:

all types of S pool on x = 0, since x > 0 is costly and S is certain that R will never observe x.

Denote S’s strategyin this subgame with µP , with µP (t) = 0 for all t. In the signaling subgame

where R has committed to s2, there are many Bayes-Nash equilibria, both pooling and separating.

Since the cost c of choosing s2 is sunk, in this subgame there are exactly the same equilibria of the

associated SFAS game Γ(T, p, U, v, 0), i.e., they are the same of a standard signaling game. Widely

used refinements acting of out-of-equilibrium beliefs (such as, e.g., D1) refine away all pooling

equilibria and most separating equilibria. For the sake of the argument consider the typical case

where only the best separating equilibrium survives, i.e., the equilibrium where all sender types

separate and each type spends on the signal x the minimum necessary to do so. Denote S’s strategy

in this equilibrium with µS . So, S’s strategy in the full game can be written as µ̄ = (µP , µS).

12We stress that if R is not forced to commit, but has just the option to do so, the main thrust of the argument

still applies. The reason is that, as long as information is valuable to R, the option to commit to s2 will always be

exercised.
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Using backward reasoning, R anticipates that by committing to s1 she will end up in a pooling

equilibrium where she plays y = ρs1(µP ), while by committing to s2 she will end up in a fully sep-

arating equilibrium where she plays, for each t, y(t) ∈ arg maxy∈Y u(t, µS(t), y). If the information

conveyed by µS is valuable to R in the SFAS game Γ(T, p, U, v, 0), then it is straightforward to see

that for a positive acquisition cost c which is small enough, R strictly prefers to end up in the fully

separating equilibrium, and therefore she will commit to s2. In such a case, the prominence of the

outcome of full separation is restored.

Let us end this discussion with a more general point regarding the actions that the receiver

can take to facilitate communication. To the extent that information transmission is valuable to

the receiver, it is reasonable to expect that the receiver acts (and even incurs costs) in order to

facilitate the emergence of a fully separating equilibrium. If public commitment to the acquisition

of the signal is possibile or if the acquisition can be made before the signal is sent, then separation

is actually the most likely outcome. But how likely it is that this is the case? For the signal to be

effectively acquired before the sender sends it, we must be in a situation where the sender and the

receiver communicate through a channel that the receiver can “switch on” at her will and whose

on/off status is easily observable (i.e., at no cost) by the sender. In addition, as the cost of keeping

the channel switched on reasonbly depends on how long it is left in such a state, another crucial

requirement is that the receiver must know approximately when the sender is going to send the

signal, otherwise another coordination problem arises. While this setup certainly fits some real

cases of signaling, it hardly fits most of them.

A case that is perhaps more frequent in real interactions is the one where the receiver can

commit to acquire the signal and is also able to inform the sender of the commitment before the

sender decides what signal to send. When signal acquisition takes the form of buying the necessary

“hearing” tools, or when it takes the form of moving to the correct “listening” location, then

public commitment sounds reasonable. However, if signal acquisition is a matter of cognitive effort

or attention, then the possibility of public commitment seems far less likely, especially for what

concerns letting the sender know about the commitment. Summing up, it seems safe to say that

the pooling outcome is not robust to the possibility for the receiver to publicly commit to acquire

the signal, but such a possibility is far from being the rule.
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A The SCAS game with Invitation Signal (SCAS-IS)

Consider a SCAS game and add a preliminary stage where S can send an additional costly signal

z ∈ Z = R+. Note that, if z can be used by S to signal to R in a credible way that the signal

x is informative, then z can indeed be used by S to invite R to acquire the signal x. This kind

of credibility is assumed by means of a single-crossing property over x and z, for all t ∈ T , which

captures the fact that the types who are investing resources to signal through x have relatively

smaller costs for sending z (see assumption B5).

As it happens for the signal x, also the invitation signal z can be acquired or not by R. The

choice by R to acquire z is denoted with r ∈ {r1, r2}, where r = r1 means that R does not acquires

z while r = r2 means that R acquires z.

In a SCAS-IS game, utility for S is U : T × X × Z × Y → R, and utility for R is V :

T ×X × Y × {s1, s2} × {r1, r2} → R. The following assumptions on utility functions hold:

B1. continuity: U and V are continuous over x, z, and y;

B2. monotonicity in action: U is strictly increasing in y;

B3. costly signaling: U is strictly decreasing in x and z;

B4. single-crossing property on (t, x): U(t, x, z, y) ≤ U(t, x′, z, y′), with x′ > x, implies that

U(t′, x, z, y) < U(t′, x′, z, y′) for all t′ > t, y, y′ ∈ Y , and z ∈ Z;

B5. single-crossing property on (x, z): U(t, x, z, y) ≤ U(t, x, z′, y′), with z′ > z, implies that

U(t, x′, z, y) < U(t, x′, z′, y′) for all x′ > x, y, y′ ∈ Y , and t ∈ T ;

B6. fixed positive cost of acquiring signal x: V (t, x, y, s1, r)−V (t, x, y, s2, r) = cx > 0 for all t ∈ T ,

x ∈ X, y ∈ Y , r ∈ {r1, r2};

B7. fixed positive cost of acquiring signal z: V (t, x, y, s, r1)−V (t, x, y, s, r2) = cz > 0 for all t ∈ T ,

x ∈ X, y ∈ Y , s ∈ {s1, s2};

In the light of B6 and B7, we have that v(t, x, y) + cx + cz = V (t, x, y, s2, r2), v(t, x, y) + cx =

V (t, x, y, s2, r1), and v(t, x, y) + cz = V (t, x, y, s1, r2).

In a SCAS-IS game, a strategy for S is a pair (ζ, µ) where ζ : T → Z describes a type’s choice

of z while µ ∈ M describes, as in a SCAS game, a type’s choice of x; we denote with Z the set of

all possible ζ. A strategy for R is a triple (r, σ, α) where:

• r ∈ {r1, r2} describes R’s choice to acquire the invitation signal z;
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• σ : Z×{r1, r2} → {s1, s2} describes R’s choice to acquire the signal x conditional on z, with

σ satisfying σ(z, r1) = σ(z′, r1) for all z, z′ ∈ Z, i.e., with the choice of s being unconditional

on z if r = r1; we denote with Σ the set of all such functions;

• α : X × {s1, s2} × {r1, r2} ×Z → Y describes (with a slight abuse of notation) R’s choice of

y, with α satisfying:

– α(x, s1, r2, z) = α(x′, s1, r2, z) for all x, x′ ∈ X,

– α(x, s1, r1, z) = α(x′, s1, r1, z′) for all x, x′ ∈ X and z, z′ ∈ Z,

– α(x, s2, r1, z) = α(x, s2, r1, z′) for all z, z′ ∈ Z,

i.e., with the choice of y being unconditional on z if r = r1 and unconditional on x if s = s1;

we denote with AIS the set of all such functions.

For given (ζ, µ) and (r, σ, α), R has posterior beliefs that depend on both her choice of r and her

choice of s. If R chooses both s = s2 and r = r2, then she has posterior beliefs β(z, x|(ζ, µ), s2, r2)

= (βt(z, x|(ζ, µ), s2, r2), . . . , βn(z, x|(ζ, µ), s2, r2)) ∈ ∆T where βt(z, x|(ζ, µ), s2, r2) denotes the

probability that S is of type t, conditional on the observation of z and x. If R chooses s = s1

and r = r2 then she does not observe x but still observes z, so that her posteriors are given

by βt(z, x|(ζ, µ), s1, r2) = βt(z, x
′|(ζ, µ), s1, r2), for all t ∈ T and all x, x′ ∈ X. If R chooses

s = s2 and r = r1 then she observes x but does not observe z, so that her posteriors are given by

βt(z, x|(ζ, µ), s2, r1) = βt(z
′, x|(ζ, µ), s2, r1), for all t ∈ T and all z, z′ ∈ Z. All these beliefs can be

obtained by Bayes’s rule, if applicable, or be chosen otherwise. Finally, if R chooses s = s1 and

r = r1 then she can only rely on her priors – no new information is acquired – so that posteriors

are trivially identical to priors: βt(z, x|(ζ, µ), s1, r1) = βt(z
′, x′|(ζ, µ), s1, r1) = pt, for all t ∈ T and

all x, x′ ∈ X and z, z′ ∈ Z.

We also introduce an equivalent of assumption A6 for the current setup, which accommodates

the fact that R obtains no information if she refuses to acquire both z and x:

B8. uniqueness of best action under s1 and r1:

ρs1,r1(µ) = arg maxy∈Y
∑

t∈T ptv(t, µ(t), y) exists and is single valued.

Note that, since z does not affect R’s utility, function ρs1,r1(µ) is the same of function ρs1(µ) of a

SCAS game.

To define the equilibrium of a SCAS-IS game in a compact and readable form, let us introduce
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some further notation:

EV [s, α|r1, (ζ, µ)] =
∑
t∈T

pt

(∑
k∈T

βk(ζ(t), µ(t)|(ζ, µ), s, r1)V (µ(t), α(µ(t), s, r, ζ(t)), s, r1)

)
;

EV [σ, α|r2, (ζ, µ)] =
∑
t∈T

pt

(∑
k∈T

βk(ζ(t), µ(t)|(ζ, µ), σ(ζ(t), r2), r2)·

· V (µ(t), α(µ(t), σ(ζ(t), r2), r2, ζ(t)), σ(ζ(t), r2), r2))

)
;

where EV [s, α|r1, (ζ, µ)] is R’s expected utility against (ζ, µ) when choosing r = r1, σ(z, r) = s for

all z ∈ Z, and some α ∈ AIS , while EV [σ, α|r2, (ζ, µ)] is R’s expected utility against (ζ, µ) when

choosing r = r2, some σ ∈ Σ, and some α ∈ AIS .

Definition 2. (weak Perfect Bayes-Nash equilibrium of the SCAS-IS game)

A wPBE equilibrium of a SCAS-IS game is a profile of strategies ((ζ, µ), (r, σ, α)) such that:

F1. (ζ(t), µ(t)) ∈ argmax
z∈Z,x∈X

U(t, x, z, α(x, σ(z, r), r, z)), for all t ∈ T ;

F2. for all x ∈ X and z ∈ Z, there exists beliefs β(z, x|(ζ, µ), s, r) ∈ ∆T such that (r, σ, α) satisfies:

F2.1. α(x, s1, r1, z) = ρs1,r1(µ) for all x ∈ X and z ∈ Z;

F2.2. α(x, s1, r2, z) ∈ arg max
y∈Y

∑
t∈T

βt(z, x|(ζ, µ), s1, r2)v(t, x, y)− cz for all x ∈ X and z ∈ Z;

F2.3. α(x, s2, r1, z) ∈ arg max
y∈Y

∑
t∈T

βt(z, x|(ζ, µ), s2, r1)v(t, x, y)− cx for all x ∈ X and z ∈ Z;

F2.4. α(x, s2, r2, z) ∈ arg max
y∈Y

∑
t∈T

βt(z, x|(ζ, µ), s2, r1)v(t, x, y) − cx − cz for all x ∈ X and

z ∈ Z;

F2.5. σ(z, r1) ∈ argmax
s∈{s1,s2}

EV [s, α|r1, (ζ, µ)] for all z ∈ Z;

F2.6. σ ∈ arg max
σ∈Σ

EV [σ, α|r2, (ζ, µ)];

F2.7. r = r1 implies that EV [σ(z, r1), α|r1, (ζ, µ)] ≥ EV [σ, α|r2, (ζ, µ)] for all z ∈ Z;

F2.8. r = r2 implies that EV [σ(z, r1), α|r1, (ζ, µ)] ≤ EV [σ, α|r2, (ζ, µ)] for all z ∈ Z;

F3. the beliefs β(z, x|(ζ, µ), s, r) ∈ ∆T are calculated by means of Bayes’s rule whenever possible.

The meaning of F1 is that S must be best-replying to R, while the meaning of F2 is that R must

be best-replying to S given her beliefs – this is better seen by noting that, for r = r1, condition F2

is substantially identical to E2 for a SCAS game. Condition F3 is straightforward. For the sake of

completeness we observe that, in a SCAS-IS game, posterior beliefs along the equilibrium path are

the following:
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• if r = r2 and s = s2 then, for all t ∈ T and for all (z, x) such that (ζ(t′), µ(t′)) = (z, x) for

some t′ ∈ T :

βt(z, x|((ζ, µ), s, r) =


pt∑

k:(ζ(k),µ(k))=(z,x) pk
if (ζ(t), µ(t)) = (z, x)

0 if (ζ(t), µ(t)) 6= (z, x);

• if r = r1 and s = s2 then, for all t ∈ T and for all x such that µ(t′) = x for some t′ ∈ T :

βt(z, x|((ζ, µ), s, r) =


pt∑

k:µ(k)=x pk
if µ(t) = x

0 if µ(t) 6= x;

• if r = r2 and s = s1 then, for all t ∈ T and for all z such that ζ(t′) = z for some t′ ∈ T :

βt(z, x|((ζ, µ), s, r) =


pt∑

k:ζ(k)=z pk
if ζ(t) = z

0 if ζ(t) 6= z;

• if r = r1 and s = s1 then βt(z, x|(ζ, µ), s, r) = pt for all t ∈ T and for all x ∈ X.

For comparability purposes, we observe that for any given SCAS game Γ(T, p, U, v, c) we have,

besides the associated SFAS game Γ(T, p, U, v, 0), also an associated SCAS-IS game, that we denote

with Γ(T, p, Û , v, cx, cz) where cx = c and Û(t, x, z, y) = U(t, x, y) + γ(z) for some appropriate

function γ.

We now turn our attention to the relevant beliefs in a SCAS-IS game. For a given strategy

profile ((ζ, µ), (r, σ, α)) and priors p, R has beliefs β(z, x|(ζ, µ), s, r) ∈ ∆T associated with each of

her information sets where an action in Y has to be chosen. Let S = Z×X∪Z×∅∪∅×X be the set

of potentially observable pairs of signals – we consider the union with Z × ∅ ∪ ∅×X to encompass

the case where only either z or x is acquired by R. Denote with (Z,X)e((ζ, µ), (r, σ, α)) ⊆ S
the set of pairs of signals that R can observe on information sets along the equilibrium path,

i.e., at information sets that contain decision nodes along the equilibrium path. Denote with

(Z,X)o((ζ, µ), (r, σ, α)) = S \ (Z,X)e((ζ, µ), (r, σ, α)) the set of pairs of signals that R can observe

only at information sets off the equilibrium path, i.e., at information sets that do not contain

decision nodes lying on the equilibrium path.

Moreover, denote with (Z,X)o1((ζ, µ), (r, σ, α)) ⊆ (Z,X)o((ζ, µ), (r, σ, α)) the set of pairs of

signals off the equilibrium path thatR cannot observe as a consequence of S deviating from (ζ, µ) be-

cause a deviation byR is required. Also, denote with (Z,X)o2((ζ, µ), (r, σ, α)) = (Z,X)o((ζ, µ), (r, σ, α))\
(Z,X)o1((ζ, µ), (r, σ, α)) the set of pairs of signals off the equilibrium path that R can potentially

observe as a consequence of S deviating from (ζ, µ). Similarly for what done for a SCAS game, we
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call receiver-triggered out-of-equilibrium beliefs the beliefs held by R which are activated by signals

in (Z,X)o1((ζ, µ), (r, σ, α)), and we call sender-triggered out-of-equilibrium beliefs the beliefs held

by R which are activated by signals in (Z,X)o2((ζ, µ), (r, σ, α)). So, in a SCAS-IS game a refine-

ment acting on out-of-equilibrium beliefs is a refinement that rules away equilibria by restricting

admissible beliefs to a subset of those possibly activated by signals in (Z,X)o((ζ, µ), (r, σ, α)). Note

also that – as it happens in SCAS games – although such refinements require that R observes an un-

expected signal, they can potentially act on beliefs activated by all (z, x) ∈ (Z,X)o((ζ, µ), (r, σ, α)),

i.e., on both sender-triggered and receiver-triggered out-of-equilibrium.

Proposition 5. The SCAS-IS game Γ(T, p, Û , v, cx, cz) has a pooling equilibrium where all types

pool on the same pair of signals. If ((ζP , µP ), (rP , σP , αP )) is such a kind of pooling equilibrium,

then it must be such that ζP (t) = 0 and µP (t) = 0 for all t ∈ T , rP = r1, σP (z, r1) = s1, and

αP (x, s1, r1, z) = ρs1,r1(µP ) for all x ∈ X and z ∈ Z. Moreover, ((ζP , µP ), (rP , σP , αP )) survives

any possible equilibrium refinement acting on out-of-equilibrium beliefs.

Proof. We first show that ((ζP , µP ), (rP , σP , αP )) is an equilibrium. Preliminarily, note that by

B8 (uniqueness of best action under s1 and r1) R’s expected utility
∑

t∈T ptv(t, µP (t), y) admits a

maximum over Y , denoted by y∗, and, hence, the profile ((ζP , µP ), (rP , σP , αP )) exists.

Consider R deviating from (rP , σP , αP ). Since αP (x, s1, r1, z) = y∗ = ρs1,r1(µ) for all x ∈ X
and z ∈ Z, no strictly profitable deviation from αP exists as long as R maintains σ(z, r1) = s1

for all z ∈ Z and chooses r1. Consider a deviation to (r′, σ′, α′) with r′ = r2, and some σ′ ∈ Σ

and α′ ∈ AIS . We observe that, since ζP (t) = 0 and µP (t) = 0 for all t ∈ T , R obtains no

additional information by playing r2 instead of r1 and σ′ instead of σP , and therefore her posterior

beliefs must be equal to her priors p. So, by B6 and B7 (fixed positive acquisition cost of x and z,

respectively), it follows that R’s expected utility for playing (r′, σ′, α′) is:

• if σ′(0, r2) = s2, EV [σ′, α′|r2, (ζP , µP )] =
∑

t∈T ptv(t, 0, α′(0, s2, r2, 0))− cx − cz;

• if σ′(0, r2) = s1, EV [σ′, α′|r2, (ζP , µP )] =
∑

t∈T ptv(t, 0, α′(0, s1, r2, 0))− cz.

By B8 (uniqueness of best action under s1 and r1) we have that
∑

t∈T ptv(t, 0, α′(0, s2, r2, 0))

and
∑

t∈T ptv(t, 0, α′(0, s1, r2, 0)) are both not greater than
∑

t∈T ptv(t, 0, y∗), implying that y∗ is

an optimal action when r′ = r2 and σ′ are played against (ζP , µP ). So, by B6 and B7 (fixed

positive acquisition cost of x and z, respectively), it follows that R’s expected utility is lower under

deviation (r2, σ′, α′) than under (rP , σP , αP ), for all σ′ ∈ Σ and all α′ ∈ AIS .

Consider S deviating from (ζP , µP ). In particular, consider S deviating to (ζ ′, µ′) such that

either ζ ′(t′) > 0 for some t′ ∈ T or µ′(t′) > 0 for some t′ ∈ T , or both. Recall that αP (x, s1, r1, z) =

y∗ for all x ∈ X and all z ∈ Z, i.e., the action chosen by R is y∗ independently of the actual value
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of ζ ′(t) and µ′(t), t ∈ T . This, together with assumption B3 (costly signaling) implies that S’s

expected utility cannot be greater under any (ζ ′, µ′) ∈ Z ×M than under (ζP , µP ).

We now show that no pooling equilibrium other than ((ζP , µP ), (rP , σP , αP )) exists. Consider

the profile ((ζP
′
, µP

′
), (rP

′
, σP

′
, αP

′
)) where ζP

′
(t) = zP

′ ≥ 0 and µP
′
(t) = xP

′ ≥ 0 for all t ∈ T ,

with zP
′

and xP
′

not both zero. Note that, exactly because ζP
′
(t) = zP

′
and µP

′
(t) = xP

′
for all

t ∈ T , along the equilibrium path R never learns anything and so R takes the same action yP
′

=

αP
′
(µP

′
(t), sP

′
, rP

′
, ζP

′
(t)) for all t ∈ T . By assumptions B6 and B7 (fixed positive acquisition cost

of x and z, respectively), R’s expected utility is:

• if rP
′

= r2 and σP
′
(z, r2) = s2 for all z ∈ Z, EV [σP

′
, αP

′ |r2, (ζP ′, µP ′)]=
∑

t∈T ptv(t, xP
′
, yP

′
)−

cx − cz;

• if rP
′

= r2 and σP
′
(z, r2) = s1 for all z ∈ Z, EV [σP

′
, αP

′ |r2, (ζP ′, µP ′)] =
∑

t∈T ptv(t, xP
′
, yP

′
)−

cz;

• if rP
′

= r1 and σP
′
(z, r1) = s2 for all z ∈ Z, EV [s2, αP

′ |r1, (ζP ′, µP ′)] =
∑

t∈T ptv(t, xP
′
, yP

′
)−

cx;

• if rP
′

= r1 and σP
′
(z, r1) = s1 for all z ∈ Z, EV [s1, αP

′ |r1, (ζP ′, µP ′)] =
∑

t∈T ptv(t, xP
′
, yP

′
).

These expected utilities imply that R strictly prefers to play, instead of (rP
′
, σP

′
, αP

′
)), any strategy

(rP
′′
, σP

′′
, αP

′′
)) such that rP

′′
= r1, σP

′′
(z) = s1 for all z ∈ Z, and αP

′′ ∈ AIS such that

αP
′′
(x, s1, r1, z) = yP

′
for all x ∈ X and z ∈ Z. So, in order for (rP

′
, σP

′
, αP

′
)) to be a best reply for

R to (ζP
′
, µP

′
), it must be that rP

′
= r1 and σ(z)P

′
= s1 for all z ∈ Z; hence, αP

′
(x, s1, r1, z) must

be constant over X and Z, and in particular it must be such that αP
′
(x, s1, r1, z) = ρs1,r1(µP

′
) for

all x ∈ X and z ∈ Z. But if this is the case, then S must have a profitable deviation. In particular,

consider S deviating to (ζP , µP ). Since R always responds with ρs1,r1(µP
′
), it follows by B3 (costly

signaling) that S’s expected utility is strictly greater under (ζP , µP ) than under (ζP
′
, µP

′
).

Finally, we show that ((ζP , µP ), (rP , σP , αP )) survives any possible equilibrium refinement act-

ing on out-of-equilibrium beliefs. Since R plays rP = r1 and σ(z)P = s1 for all z ∈ Z, it follows that

(Z,X)e((ζP , µP ), (rP , σP , αP )) = (Z,X)o2((ζP , µP ), (rP , σP , αP )) = ∅ and (Z,X)o1((ζP , µP ), (rP , σP , αP )) =

S, because R can observe a pair in S only if she deviates from her equilibrium strategy. In particu-

lar, no sender-triggered out-of-equilibrium belief exists because, since σ(z)P = s1 for all z ∈ Z, any

pair in S that is chosen by S leads to the same R’s information set, which is on the equilibrium

path. Hence, at this information set, R must have constant beliefs which are identical to the priors

p and which cannot be refined away by refinements acting on out-of-equilibrium beliefs.

So, refinements acting on out-of-equilibrium beliefs can rule out only beliefs associated with

information sets that become active when a pair (Z,X)o1((ζP , µP ), (rP , σP , αP )) = S is observed.
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However, none of these receiver-triggered out-of-equilibrium beliefs is necessary to sustain the con-

sidered equilibrium. To see why, note that R always uses the priors p and S’s strategy (ζP , µP ) to

evaluate whether to deviate or not from (rP , σPαP ), as (rP , σPαP ) is a best response to (ζP , µP )

given p, no matter what are the receiver-triggered out-of-equilibrium beliefs held by R; since

(ζP , µP ) is also a best response to (rP , σPαP ), it follows that S has no strictly profitable de-

viation from (ζP , µP ), and this is again independent of the receiver-triggered out-of-equilibrium

beliefs held by R. Hence, no refinement acting on out-of-equilibrium beliefs can refine away the

pooling equilibrium ((ζP , µP ), (rP , σP , αP )).

B The SCAS game with Acquisition Effort (SCAS-AE)

Consider a SCAS game where R, instead of choosing s ∈ {s1, s2}, can choose an acquisition effort

e ∈ [0, 1]. The signal x is acquired by R with probability e.

In a SCAS-AE game, utility for S is U : T ×X × Y → R, as a in SCAS game. Instead, utility

for R is V : T ×X × Y × [0, 1]→ R. The following assumptions on utility functions hold:

C1. continuity: U and V are continuous over x, y and e;

C2. monotonicity in action: U is strictly increasing in y;

C3. costly signaling: U is strictly decreasing in x;

C4. single-crossing property: U(t, x, y) ≤ U(t, x′, y′), with x′ > x, implies that U(t′, x, y) <

U(t′, x′, y′) for all t′ > t and y, y′ ∈ Y ;

C5. costly effort of acquisition: V is strictly decreasing in e;

C6. separability of the effort cost: V (t, x, y, 0)− V (t, x, y, e) = ce(e).

In the light of C5 and C6, we have that V (t, x, y, e) = v(t, x, y)− ce(e).
In a SCAS-AE game, a strategy for S is a function µ ∈ M describing, as in a SCAS game, a

type’s choice of x. A strategy for R is a triple (e, α1, α2) where:

• e ∈ [0, 1] describes R’s choice of acquisition effort;

• α1 ∈ Y describes R’s choice of action if the signal x is not acquired, and hence is unconditional

on x;

• α2 : X → Y describes R’s choice of action if the signal x is acquired, and hence is conditional

on x; AAE denotes the set of possible functions α2.
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For given µ and (e, α1, α2), R has posterior beliefs that depend on whether the signal x has

been acquired or not. Let us indicate, with a slight abuse of notation, the event “x is not acquired”

with s = s1 and the event “x is acquired” with s = s2. If s = s2 then R has posterior beliefs

β(x|µ, s2) = (β1(x|µ, s2), . . . , βn(x|µ, s2)) ∈ ∆T , where βt(x|µ, s2) denotes the probability that S

is of type t, conditional on the observation of x. These beliefs can be obtained by Bayes’s rule, if

applicable, or be chosen otherwise. If, instead, s = s1 then R can only rely on her priors – no new

information is acquired – so that posteriors are identical to priors: βt(x|µ, s1) = βt(x
′|µ, s1) = pt,

for all t ∈ T and all x, x′ ∈ X.

We also introduce the following assumption:

C7. uniqueness of best action when signal x is not acquired:

ρs1(µ) = arg maxy∈Y
∑

t∈T ptv(t, µ(t), y) exists and is single valued.

Assumption C7 is the counterpart of assumption A6 in a SCAS game. Moreover, because of

assumption C6, assumption C7 implies that ρs1(µ) = arg maxy∈Y
∑

t∈T ptv(t, µ(t), y), i.e., ρs1(µ) is

the best reply whenever posteriors are identical to priors and independently of the choice of e.

Definition 3. (weak Perfect Bayes-Nash equilibrium of the SCAS-AE game)

A wPBE equilibrium of a SCAS-AE game is a profile of strategies (µ, (e, α1, α2)) such that:

G1. µ(t)∈argmax
x∈X

[(1− e)U(t, x, α1) + eU(t, x, α2(x))], for all t ∈ T ;

G2. for all x ∈ X, there exists beliefs β(x|µ, s) ∈ ∆T such that (µ, (e, α1, α2)) satisfies:

G2.1. α1 = ρs1(µ);

G2.2. α2(x) ∈ arg max
y∈Y

∑
t∈T

βt(x|µ, s2)v(t, x, y) for all x ∈ X;

G2.3. e∈ arg max
e∈[0,1]

∑
t∈T

pt

[
(1− e)V (µ(t), α1, e)+e

(∑
k∈T

βk(µ(t)|µ, s)V (t, µ(t), α2(µ(t)), e)

)]
;

G3. the beliefs β(x|µ, s) ∈ ∆T are calculated by means of Bayes’s rule whenever possible.

The meaning of G1 is straightforward: S must be best-replying to R, taking into account that R

acquires signal x with probability e. Similarly, the meaning of G2 is that R must be best-replying to

S given her beliefs, taking into account that signal x is acquired with probability e. Condition G3 is

also straightforward. We observe that, in the present setup, posterior beliefs along the equilibrium

path are the following:

• if s = s2 then, for all t ∈ T and for all x such that µ(t′) = x for some t′ ∈ T :

βt(x|µ, s) =


pt∑

k:µ(k)=x pk
if µ(t) = x

0 if µ(t) 6= x;
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• if s = s1 then βt(x|µ, s) = pt for all t ∈ T and for all x ∈ X.

For comparability purposes, we observe that for any given SCAS game Γ(T, p, U, v, c) we have,

besides the associated SFAS game Γ(T, p, U, v, 0), also an associated SCAS-AE game, that we denote

with Γ(T, p, U, v, ce).

We now turn our attention to the relevant beliefs in a SCAS-AE game. For given strategy

profile (µ, (e, α1, α2)) and priors p, R has beliefs β(x|µ, s) ∈ ∆T associated with each of her

information sets where an action in Y has to be chosen. Denote with Xe(µ, (s, α1, α2)) ⊆ X the set

of signals that R can observe on information sets along the equilibrium path, i.e., at information

sets that contain decision nodes along the equilibrium path. Denote with Xo(µ, (s, α1, α2)) =

X\Xe(µ, (e, α1, α2)) the set of signals thatR can observe only at information sets off the equilibrium

path, i.e., at information sets that do not contain decision nodes lying on the equilibrium path.

Moreover, denote with Xo1(µ, (e, α1, α2)) ⊆ Xo(µ, (e, α1, α2)) the set of signals off the equilib-

rium path that R cannot observe as a consequence of S deviating from µ because a deviation by R

is required. Also, denote with Xo2(µ, (e, α1, α2)) = Xo(µ, (e, α1, α2))\Xo1(µ, (e, α1, α2)) the set of

signals off the equilibrium path that R can potentially observe as a consequence of S deviating from

µ. Similarly for what done for CAS game, we call receiver-triggered out-of-equilibrium beliefs the

beliefs held by R which are activated by signals in Xo1(µ, (e, α1, α2)), and we call sender-triggered

out-of-equilibrium beliefs the beliefs held by R which are activated by signals in Xo2(µ, (e, α1, α2)).

So, a refinement that rules away equilibria by restricting admissible beliefs to a subset of those

possibly activated by signals in Xo(µ, (e, α1, α2)) can be regarded as a refinement acting on out-

of-equilibrium beliefs. Note also that – as it happens in SCAS games – although such refinements

require that R observes an unexpected signal, they can potentially act on beliefs activated by all

x ∈ Xo(µ, (e, α1, α2)), i.e., they act not only on sender-triggered out-of-equilibrium beliefs, but also

on receiver-triggered ones.

Proposition 6. The SCAS-AE game Γ(T, p, U, v, ce) has a pooling equilibrium. If (µP , (eP , α1P , α2P ))

is a pooling equilibrium, then it must be such that µP (t) = 0 for all t ∈ T , eP = 0, α1P =

α2P (µP (t)) = ρs1(µP ) for all t ∈ T . Moreover, (µP , (eP , α1P , α2P )) survives any possible equilib-

rium refinement acting on out-of-equilibrium beliefs.

Proof. We first show that the profile (µP , (eP , α1P , α2P )) is an equilibrium. Preliminarily, note

that by C7 (uniqueness of best action when signal x is not acquired) R’s expected utility, i.e.,∑
t∈T ptv(t, µP (t), y) =

∑
t∈T ptV (t, µP (t), y, 0), admits a maximum over Y , denoted by y∗, and so

the profile (µP , (eP , α1P , α2P )) exists.

Consider R deviating from (eP , α1P , α2P ). Since α2P (x) = y∗ = ρs1(µ) for all x ∈ X, no strictly

profitable deviation from αP exists as long as s = s1 takes place. But if R maintains eP = 0 then
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s = s1 takes place with probability 1. So, consider a deviation to (e′, α1′, α2′) with e′ > 0 and

some α1′ ∈ Y and α2′ ∈ AAE . We observe that, since µP (t) = 0 for all t ∈ T , R obtains no

additional information if the event s = s2 takes places, and therefore her posterior beliefs in such a

case must still be equal to her priors p. By C6 (separability of the effort cost) the expected utility

for playing (eP , α1P , α2P ) is
∑

t∈T ptv(t, 0, y∗) while the expected utility for playing (e′, α1′, α2′)

is
∑

t∈T pt [e′v(t, 0, α1′) + (1− e′)v(t, 0, α2′(0))] − ce(e′). By C7 (uniqueness of best action when

signal x is not acquired) it follows that v(t, 0, y∗) ≥ v(t, 0, α1′) and v(t, 0, y∗) ≥ v(t, 0, α2′(0)) which

implies that v(t, 0, y∗) ≥ [e′v(t, 0, α1′) + (1− e′)v(t, 0, α2′(0))], and hence by C5 (costly effort of

acquisition) we get that R’s expected utility is not greater under deviation (e′, α1′, α2′) than under

(eP , α1P , α2P ), for all α1′ ∈ Y and all α2 ∈ AAE .

Consider S deviating from µP . In particular, consider S deviating to µ′ such that µ′(t′) > 0 for

some t′ ∈ T . Recall that eP = 0 and α1P = α2P (x) = y∗ for all x ∈ X, i.e., signal x is acquired

with probability 0 and the action chosen by R is y∗ independently of the actual value of µ′(t),

t ∈ T . These facts, together with assumption C3 (costly signaling), imply that S’s expected utility

is equal, for each t ∈ T , to U(t, µ(t), y∗) and, therefore, it cannot be greater than U(t, µP (t), y∗)

for any µ′ ∈M.

We now show that no pooling equilibrium other than (µP , (eP , α1P , α2P )) exists. Consider

an alternative pooling profile (µP
′
, (eP

′
, α1P

′
, α2P

′
)) where µP

′
(t) = xP

′
> 0 for all t ∈ T . Note

that, since µP
′
(t) = xP

′
for all t ∈ T , along the equilibrium path R never learns anything. So,

if event s = s1 takes place and x is acquired, R must take the same action yP
′

= α2P
′
(µP

′
(t))

for all t ∈ T . Hence, by assumption C6 (separability of the effort cost), R’s gets an expected

utility equal to
∑

t∈T pt

[
eP
′
v(t, xP

′
, yP

′
) + (1− eP ′)v(t, xP

′
, α1P

′
)
]
− ce(eP

′
) which, by C5 (costly

effort of acquisition) and non-negativity of eP
′
, is also strictly lower than the maximum between∑

t∈T ptv(t, xP
′
, yP

′
) and

∑
t∈T ptv(t, xP

′
, α1P

′
), each of which is in turn not greater than the ex-

pected utility of playing (eP
′′
, α1P

′′
, α2P

′′
) such that eP

′′
= 0 and α1P

′′
= α2P

′′
(x) = ρs1(µP

′
),

because by C7 (uniqueness of best action when signal x is not acquired) ρs1(µP
′
) maximizes∑

t∈T ptv(t, xP
′
, y) with respect to y ∈ Y . So, in order for (eP

′
, α1P

′
, α2P

′
) to be a best reply

for R to µP
′
, it must be that eP

′
= 0 and α1P

′
= α2P

′
(x) = ρs1(µP

′
) for all x ∈ X. But if this is

the case, then we claim that S has a profitable deviation. In particular, consider S deviating to µP .

Since R always responds with ρs1(µP
′
) and by B3 (costly signaling), it follows that S’s expected

utility is strictly greater under µP than under µP
′
.

Finally, we show that (µP , (eP , α1P , α2P )) survives any possible equilibrium refinement acting

on out-of-equilibrium beliefs. Since R plays eP = 0, the event s = s1 takes place with probability 1

along the equilibrium path. So, it follows that Xe(µP , (eP , α1P , α2P )) = Xo2(µP , (eP , α1P , α2P )) =

∅ and Xo1(µP , (eP , α1P , α2P )) = X, because R can observe a signal x ∈ X only if she deviates
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from her equilibrium strategy. In particular, no sender-triggered out-of-equilibrium belief exists

because, since s = s1 with probability 1, any x ∈ X that is chosen by S leads to the same R’s

information set, which is on the equilibrium path. Hence, at this information set, R must have

constant beliefs which are identical to the priors p and which cannot be refined away by refinements

acting on out-of-equilibrium beliefs.

Therefore, refinements acting on out-of-equilibrium beliefs can rule out only beliefs associated

with information sets that become active when a signal in x ∈ Xo1(µP , (eP , α1P , α2P )) = X

is observed. However, none of these receiver-triggered out-of-equilibrium beliefs is necessary to

sustain the considered equilibrium. To see why, note that R always uses the priors p and S’s

strategy µP to evaluate whether to deviate or not from (eP , α1P , α2P ); so, there is no deviation

by S that can induce R to deviate from (eP , α1P , α2P ), as (eP , α1P , α2P ) is a best response to

µP given p, no matter what are the receiver-triggered out-of-equilibrium beliefs held by R; since

also µP is a best response to (eP , α1P , α2P ), it follows that S has no strictly profitable deviation

from µP , and this is again independent of the receiver-triggered out-of-equilibrium beliefs held

by R. Hence, no refinement acting on out-of-equilibrium beliefs can refine away the considered

equilibrium (µP , (eP , α1P , α2P )).
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